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Abstract1 
Neural networks have been successfully used for 
implementing control architectures for different 
applications. In this work, we examine a neural 
network augmented adaptive critic as a Level 2 
intelligent controller for a C-17 aircraft. This intelligent 
control architecture utilizes an adaptive critic to tune 
the parameters of a reference model, which is then used 
to define the angular rate command for a Level 1 
intelligent controller. The present architecture is 
implemented on a high-fidelity non-linear model of a 
C-17 aircraft. The goal of this research is to improve 
the performance of the C-17 under degraded conditions 
such as control failures and battle damage. Pilot ratings 
using a motion based simulation facility are included in 
this paper. The benefits of using an adaptive critic are 
documented using time response comparisons for 
severe damage situations.  

1 Introduction  
In the last 30 years, at least 10 aircraft have 
experienced major flight control system failures 
claiming more than 1100 lives1, 2. The Intelligent Flight 
Control (IFC) research program at NASA Ames began 
in 1992 to address adaptive aircraft control. The major 
feature of IFC technology is its ability to adapt to 
unforeseen events through the use of self-learning 
neural flight control architecture. These events can 
include sudden loss of control surfaces, engine thrust, 
and other causes that may result in the departure of the 
aircraft from safe flight conditions.  

To provide a real-time system capable of 
compensating for a broad spectrum of failures, NASA 
researchers have investigated a neural flight control 
architecture3, 4, developed by Rysdyk and Calise5, for 
both flight and propulsion control. The concept was to 
develop a system capable of utilizing all remaining 
sources of control power after damage or failures. The 
Integrated Neural Flight and Propulsion Control 
System (INFPCS) uses a daisy-chain control allocation 
technique to ensure that conventional flight control 
surfaces will be utilized under normal operating 
conditions. Under damage or failure conditions, the 
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system may allocate flight control surfaces, and 
incorporate propulsion control, when additional control 
power is necessary for achieving desired flight control 
performance. 

The NASA Ames Intelligent Flight Controller 
(IFC) uses a neural flight control architecture that is based 
upon the augmented model inversion controller. This 
direct adaptive tracking dynamic inverse controller 
integrates feedback linearization theory with both pre-
trained and on-line learning neural networks. Pre-trained 
neural networks are used to provide estimates of 
aerodynamic stability and control characteristics required 
for model inversion. On-line learning neural networks are 
used to generate command augmentation signals to 
compensate for errors in the estimates and from the model 
inversion. The on-line learning neural networks also 
provide additional potential for adapting to changes in 
aircraft dynamics due to damage or failure. Reference 
models are used to filter command inputs in order to 
specify desired handling qualities. A Lyapunov stability 
proof guarantees boundedness of the tracking error and 
network weights5. Successful piloted simulation studies 
were also performed at NASA Ames Research Center on a 
commercial transport aircraft simulator3. Subjects included 
both NASA test pilots and commercial airline crews.  

The research reported in this paper is an extension 
of the above work to include reference model adaptation 
using adaptive critic technologies6,7,14 and validation of this 
approach using a non-linear C-17 simulation test bed. 
Reference model adaptation is considered a higher level of 
intelligence in the hierarchy of intelligent control8,12,13. It is 
necessary in situations where the system is degraded to a 
level where control authority is insufficient to achieve the 
required reference model characteristics. The idea then is 
to degrade the reference model to match the capabilities of 
the airplane. This is achieved using the adaptive critic 
technology. Adaptive critics have been successfully used 
in a reference model application for an engine control 
problem14. Other applications of adaptive critics include 
aircraft control9,10 and spacecraft control11.  

This paper presents overviews of adaptive critic 
technology and intelligent flight control architecture based 
on the idea of levels of intelligent flight control8,12,13. Next, 
we elaborate the adaptive critic implementation for 
reference model adaptation. Finally, the results of the 
application to aircraft control problem are discussed.  

2 Levels of Intelligent Control 
Over the past decade, several innovative control 
architectures utilizing the intelligent control tools have 
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been proposed. KrishnaKumar8,12, has proposed a 
classification scheme based on the ability of the 
intelligent flight control architecture for self-
improvement (see Table 1).  The classification scheme 
divides the control architectures among levels of 
intelligent control. For instance, most of the proposed 
architectures can be divided among level 0, level 1, 
level 2, and level 3 intelligent control schemes. Based 
on this classification scheme, several seemingly 
differing control architectures can be looked at as 
achieving similar goals.   

 
Table 1.  The Levels of Intelligent Control 

L Self 
improvement 
of  

Description 

0 Tracking 
Error (TE) 

Robust Feedback Control: Error 
tends to zero. 

1 TE + Control 
Parameters 
(CP) 

Adaptive Control: Robust feedback 
control with adaptive control 
parameters (error tends to zero for 
non-nominal operations; feedback 
control is self improving). 

2 TE + CP + 
Performance 
Measure 
(PM) 

Optimal Control: Robust, adaptive 
feedback control that minimizes or 
maximizes a utility function over 
time. 

3 TE+CP+PM
+ Planning 
Function 

Planning Control: Level 2 + the 
ability to plan ahead of time for 
uncertain situations, simulate, and 
model uncertainties. 

3 Adaptive Critics 
Adaptive critic designs have been defined as designs 
that attempt to approximate dynamic programming 
based on the principle of optimality. Adaptive critic 
designs consist of two entities, an action network that 
produces optimal actions and an adaptive critic that 
estimates the performance of the action network. The 
adaptive critic is an optimal or near optimal estimator 
of the cost-to-go function that is trained (adapted) 
using recursive equations derived from dynamic 
programming. The critic is termed adaptive as it adapts 
itself to output the optimal cost-to-go function from a 
given system state. The action network is adapted 
simultaneously based on the information provided by 
the critic. The action network consists of any piece of 
the overall control architecture that has an effect on the 
final performance of the closed-loop system. In typical 
applications, the action network consists of the 
controller that is optimized using the critic. The inputs 
required for designing an adaptive critic design are  
• The cost function or the performance measure. 
• A parameterized representation of the critic. 

• A parameterized representation of the action network. 
• A method for adapting the parameters of the critic. 

3.1 Choice of the cost function 
The choice of the cost function comes from the problem at 
hand. The cost could be distributed over the entire length 
of time or be defined at the end of the process. Typical 
examples of the two types are minimizing the fuel spent 
for a certain flight mission or intercepting a projectile 
where the utility depends only on the final error. Typically, 
the cost function can be given as, 
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where )](),([ iuixU  is the utility function or a penalty 
function that is a function of the state of the system, x(i), 
and the control (action), u(i), given to the system. ‘γ’ is a 
discount factor that discounts the future performance. 

The dynamic programming principle states that 
we can formulate an optimal control problem where we 
can get an optimal solution by minimizing the cost-to-go 
function, J(t), which is defined as, 
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So the critic is designed to approximate the optimal form 
of this cost-to-go function or its derivatives with respect to 
the state of the system depending on the particular adaptive 
critic design. 

3.2 Parameterized representation for the critic 
and the action network 

Parameterization of the critic and the action network is 
achieved by the use of neural networks. Having learnt to 
model a system, neural networks can be used to provide 
sensitivities of the system outputs with respect to the 
system inputs. This proves to be useful information 
especially for the training of our intelligent control 
architecture. Reference 6 provides detailed insight into the 
area of neural networks and their use in control. 

3.3 Training the critic 
Several methods have been proposed for training adaptive 
critics that are based on the dynamic programming 
equation. These methods vary based on the level of 
complexity and the degree of accuracy sought for training 
the cost-to-go function. Some of these methods are the 
heuristic dynamic programming (HDP) approach, the dual 
heuristic programming (DHP) approach, and the global 
dual heuristic dynamic (GDHP) programming approach. 
The DHP approach was used in this study and is outlined 
in section 5.1 References 6-7 provide a more detailed 
discussion on the subject.  
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4 NASA Ames Intelligent Flight 
Control Architecture 

Adaptive critic methods have been successfully applied 
to IFC architectures9-12,14. Figure 1 presents the 
implementation of a Level 2 Intelligent Controller on a 
C-17 test bed used in this study. The levels of 
intelligent control outlined earlier are labeled in the 
figure. It should be noted that Level 0 is non-adaptive 
whereas Level 1 is adaptive. Level 1 is non-optimal 
whereas Level 2 is optimal.  Details of the figure are 
presented below. 
 
Reference Models: The pilot commands roll and pitch 
rates and aerodynamic lateral accelerations through 
stick and rudder pedal inputs. These commands are 
then transformed into body-axis rate commands, which 
also include turn coordination, level turn 
compensation, and yaw-dampening terms. First-order 
reference models are used to filter these commands in 
order to shape desired handing qualities.  
 
P + I Error Controller (Level 0): Errors in roll rate, 
pitch rate, and yaw rate responses can be caused by 
inaccuracies in aerodynamic estimates and model 
inversion. Unidentified damage or failures can also 
introduce additional errors. In order to achieve a rate-
command-attitude-hold (RCAH) system, a 
proportional-integral (PI) error controller is used to 
correct for errors detected from roll rate, pitch rate, and 
yaw rate (p, q, r) feedback.  
 

Learning Neural Network (Level 1): The on-line learning 
neural networks work in conjunction with the error 
controller. By recognizing patterns in the behavior of the 
error, the neural networks can learn to remove biases 
through control augmentation commands. These 
commands prevent the integrators from having to windup 
to remove error biases. By allowing integrators to operate 
at nominal levels, the neural networks enable the controller 
to provide consistent handling qualities. The learning 
neural networks not only helps control the nominal system, 
but also provides an additional potential for adapting to 
changes in aircraft dynamics due to control surface failures 
or airframe damage. 
 
Dynamic Inversion/Aero Generation: The dynamic 
inversion element converts the summed response 
commands into virtual control surface commands. 
Dynamic inversion is based upon feedback linearization 
theory. No gain-scheduling is required, since gains are 
functions of aerodynamic stability and control derivative 
estimates and sensor feedback. Several methods are 
available to accomplish approximate model definition: 
simple linear model methods, nonlinear tables or using 
pre-trained neural networks (non-changing) to provide 
estimates of aerodynamic stability and control 
characteristics. The model is then inverted to solve for the 
necessary control surface commands. In our work, a 
Levenberg-Marquardt (LM) multi-layer perceptron17 is 
used to provide dynamic estimates for model inversion. 
The LM network is pre-trained with stability and control 
derivative data generated by a Rapid Aircraft Modeler, and 
vortex-lattice code15.  
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Figure 1. Intelligent flight control architecture 
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Optimal Allocation (Level 2): This system uses a linear 
programming technique to optimally allocate required 
acceleration to available control surfaces based on 
perceived limits. A best control allocation hierarchy is 
defined using a set of weightings on individual control 
usage. The weights depend on the allowed structural 
limits and user’s preferences. These pre-programmed 
weights will drive the optimal control allocation based 
on a linear programming formulation.  Unconventional 
flight control surface allocations are only utilized when 
the primary flight control surface commands exceed 
the known limits of deflection.  For example, yaw rate 
control is normally provided through rudder deflection. 
If this command should saturate, then the remaining 
portion of the command is applied via a blended 
solution that could result in the deflection ailerons 
and/or spoilers. This decision is optimally chosen by 
the control allocation technology based on linear 
programming. 
 
Adaptive Critic (Level 2):  In the event of a severe 
degradation in performance of an aircraft, pilot 
handling qualities as dictated by the reference model 
cannot be maintained.  It will be desirable to 
“optimally” modify the dynamics of the reference 
model to suit the situation in hand.  Towards these 
goals an adaptive critic is utilized to optimize the shape 
of the reference model dynamics in the event of a 
failure or damage.  

5 Adaptive Critic Application 
This paper highlights the adaptive critic application to 
reference model adaptation. A static reference model is 
sufficient when the system is functioning normally. 
The model needs to change when desired performance 
is not achievable with the available control authority. If 

this problem is not rectified, two issues arise: (1) wrong 
signal for NN training for Level 1; (2) error wind-up. The 
adaptive critic application to reference model adaptation 
addresses these issues. Another issue, although not 
considered in this paper, is the use of engines for rotational 
control. Engines are not fast enough to provide the same 
handling qualities. In cases where propulsion control is 
used, adaptive critics can be used to optimally adjust the 
reference model frequencies.   

The critic is implemented as a Dual-heuristic 
Dynamic Programming (DHP) critic. The DHP scheme is 
similar in idea to the HDP scheme, however, in DHP, the 
critic outputs the derivative of the performance with 
respect to control directly, which is the signal necessary 
for adapting the controller. Though DHP is more complex 
both theoretically and in implementation, it is generally 
considered to produce better results.   

5.1 Use of the Reference Model as the Action 
Network 

The overall implementation of the adaptive critic 
architecture for the aircraft control problem is shown in 
Figure 2. In many of the methods using adaptive critics, 
the trained critic is finally used to update the controller. In 
this implementation, the reference model is looked at as 
the action network. In other words, the reference model is 
the input into the closed-loop system consisting of the 
Level 1 intelligent controller and thus is the right choice as 
the action network. In the face of any failures or damage, it 
is sometimes impossible for the controller to achieve the 
system outputs as demanded by the original reference 
model. The Level 2 intelligent controller using the 
adaptive critic neural network, therefore attempts to adapt 
the parameters of the reference model to provide the 
system realizable performance.  

 
 
 
 
 
 
 
  
 
 
 
 
  
 
 
 
 
 

Figure 2. Reference model tuning using the adaptive critic
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5.1.1 Adaptive Critic Neural Network 

Adaptation is achieved using a single hidden-layer 
neural network with the following inputs: 

• error in the corresponding axes at time t 
• error rate in the corresponding axes at time t 
• control needed beyond the limits at time t 
• pilot inputs at time t 

 
The neural network output is defined to be the 
derivative of the performance index with respect to the 
individual error in the axes (roll rate error, pitch rate 
error, and yaw rate error). The pertinent equations are 
given below: 
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where 
 
e = error in each of the three axes (p, q, r) 
m, c = constants chosen by the user  
 
A sigmoid function is chosen as a penalty function 
since it penalizes the performance measure only if the 
error rises beyond a certain value, c. It can be seen 
from equation 3, for a value of c = 0.01, the 
performance measure starts getting penalized when the 
error approaches 0.1 rad/sec. So, for values less than 
0.1 rad/sec the penalty is close to zero and for values 
beyond 0.1 rad/sec the penalty is close to one. At the 
same time since the penalty function goes from zero to 
one, it automatically provides itself as a normalized 
function. The constant m defines the slope of the 
Sigmoidal curve.  
  
5.1.2 DHP Critic Training Equations  

We use a first order reference model for our problem. 
Given 
  
(4) pdddd ukyy +−= ω& ,   
 
subtracting  y&  and ydω  from both sides of the 
equation and rearranging we get 
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In the above equation,  )(ˆ yyd dωδ += &  represents the 
additional control needed and could be seen in this context 
as an external disturbance that causes error to behave non-
optimally.  

In discrete form (first order forward differencing), 
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Now, from Dynamic Programming, we know that, 
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where γ  is a discount factor (usually > 0.9) 

Now differentiating with respect to te and noting that 

minimization is an approximation and that  J  is only an 
estimate, we have 
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The above quantity is the training signal for the critic at 
time “t” 
 
5.1.3 Reference Model Adaptation Equations 

Now we derive the computation of the performance 

sensitivities, (
1d

J
ω∂
∂
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dk

J
∂
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), for adapting the reference 
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model parameters, dd k,1ω . In the rest of the 
presentation, the notation ‘^’ has been dropped for 
convenience. 
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If we let dtfS 01 = , one can write a dynamic 
equation for the quantities under summation as follows, 
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A smoothing algorithm can be used to desensitize the 
adaptation to sensor noise and other unwanted 
variations in the error estimate. This is achieved using 
a smoothing algorithm given below: 
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Now the parameters of the reference model can be 
adapted using the following gradient descent equations 
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where, 
 

kηηω ,         = adaptation constants. 

21 ,bb             = learning biases. 

dLdUdLdU kk ,,,ωω  = Upper and lower limits of 
variation. 
 
Learning biases are used to recover the original 
frequencies and gains when the failure is removed. Also, 
by limiting the frequency and the gain, stability of the 
reference model is maintained.  
  
5.1.4 An Optimistic Retrospective Critic (ORC) 

As a first approximation, it is assumed that the critic’s 
adaptation has progressed in the right direction and that the 
performance will achieve a stationarity condition in the 
next time step of interest. This is equivalent to saying that 
λt+1 =0. Using this assumption, the λ’s are computed for 
preceding n time steps using equation 10 and the reference 
model is adapted using the rest of the equations through 
equation 19. This approach is named here as the Optimistic 
Retrospective Critic (ORC) to reflect the fact the approach 
is both optimistic (assuming λt+1 =0) and looks at n time 
steps into the past to compute the corrected λ’s.  The ORC 
approach can be seen as the bench mark by which the 
adaptive critic performance can be evaluated.  

5.2 Application of the Critic approaches to the 
C-17  

5.2.1 The Problem 

The C-17 airplane is a high performance military transport 
with a quad-redundant Fly-by-Wire Flight Controls 
System.  The flexibility of its control architecture makes it 
a suitable platform for various types of research in support 
of safety initiatives and for preliminary investigation of 
changes to improve production C-17 operation. The C-17 
has 22 controllable aerodynamic surfaces and 4 jet 
engines.  

These control surfaces together provide a high 
level of analytical redundancy in the event of failure. The 
IFC architecture exploits the analytical redundancy by 
optimally allocating the surfaces to achieve desired 
accelerations16. In the event of severe damage or failures, 
the requested response characteristics (both frequency and 
gain) cannot be attained and hence the reference model 
needs to be adapted. In the next section, we present results 
of using the adaptive critic approach for various failure 
scenarios and for two different critic approaches.  
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5.2.2 Piloted Study using the ORC 

This paper presented the concept of an adaptive critic 
adapting the reference model to obtain a match 
between the reference model and the current 
capabilities of the aircraft. In addition to testing the 
system using time response characteristics, the Level 2 
Intelligent Flight Control architecture was tested for its 
damage-adaptive characteristics using piloted 
simulation study. The objectives of this study were to 
evaluate the benefits of the improvements from a Level 
1 IFC to the Level 2 IFC. The IFC architecture was 
evaluated utilizing a full-motion simulator available in 
the Crew Vehicle Systems Research Facility (CVSRF) 
at NASA-Ames Research Center.  The Advanced 
Concepts Flight Simulator (ACFS), was modified to 
accommodate a model  of a Boeing C-17 aircraft. The 
simulator is equipped with a six degree-of-freedom 
motion system, programmable flight displays, digital 
sound and aural cueing system, and a 180-degree field 
of view visual system. The Boeing C-17 is a fly-by-
wire transport aircraft with a stabilizer, four elevators, 
two ailerons, eight spoiler panels and two rudders, for a 
total of 17 surfaces used for active control.  Slats, flaps 
and engines were not used by the IFC for control of the 
aircraft configuration. The pilots could manually utilize 
these surfaces for trim control of the aircraft.  

For the piloted study, it was decided to use the 
ORC approach for its simplicity and due to constraints 
posed by the scheduling of the pilots. Although the 
ORC approach is an approximation, it provided a good 

alternative to the NN-based adaptive critic approach for 
the pilot-in-the-loop application. The failure scenarios 
considered for this study is shown in Table 1.  

Five different C-17 qualified pilots flew and 
compared the Level 2 controller and the Level 1 controller. 
The pilots gave a rating based on the Cooper-Harper Scale. 
Results presented in Figure 3 clearly demonstrated the 
benefit of the optimal nature of the Level 2 controller. 
 

Table 1. Failure Scenarios 
  C17 
Scenario  

Scenario Characteristics: 
Winds 190 @ 10, light turbulence 

1 Full tail failure.  Stabilizer failed at trim.  
2 rudders,  4 elevators failed at 0 deg. 

2 2 ailerons and 8 spoiler panels failed at 0 
deg. 

3 Two engines out on one side on takeoff, 
rotate speed +  10Kts. 

4 During tactical descent (failures on one 
side) 
• 23,000’: Stab frozen at trim 
• 20,000’: 2 Elevators frozen at 0 deg. 
• 17,000’: Upper rudder  hard over 
• 15,000’: Outboard flap fails retracted 
• 14,000’: Aileron frozen at 0 deg. 
• 13,000’: Two outboard spoilers 

frozen at 0 deg. 
• When engines come out of reverse: 

Outboard engine seizes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Cooper-Harper rating for various piloted failure scenarios  
(HQ: Handling Qualities rating using a Cooper-Harper scale). 
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Figures 4 and 5 present sample plots for two failure 
conditions. It is interesting to see the adaptation in the 
reference model parameters and the overall 
performance of the piloted aircraft for the landing 
scenarios. In particular, the coupled failure scenario 
shows that the ORC approach adapts the parameters 
only when necessary to accommodate larger errors. 
This is seen in subplot 2 ands 3 in which the adaptation 
begins only after the third failure signaling that the first 
three failures did not need any changes to the reference 
model. 
 
5.2.3 Adaptive Critic Application to C-17 

In this section we present results obtained using the 
adaptive critic approach for two failure scenarios. An 
external testing program is used to stimulate pilot 
commands into the simulation that are intended to 
exercise the roll control of the aircraft for a wing 
hydraulic failure scenario (control failures in ailerons 
and spoilers) and pitch control for a tail failure (control 
failures in elevators and rudder).  

Before starting the sequence, the aircraft has 
been flying in level flight with the autopilot, 
proceeding at 250 kts on heading 330 magnetic at 8000 
feet MSL altitude. The Level 1 IFC is active. The 
adaptive critic has been observing the system, slowly 
adjusting the gains and frequencies of the reference 
model.  

At approximately 160 seconds into the data 
run (see Figures 6 and 7), all ailerons and spoilers are 
failed at their idle position for the wing failure case 
(Figure 6) and both rudders and all elevators and 
stabilizer are failed at their idle position for the tail 
failure case (Figure 7). The flight control software must 
achieve its roll and pitch control, for the respective 
failures, using nontraditional deployment of the 
remaining surfaces.  

The adaptive critic correctly notices the 
degradation in performance, and rapidly changes gain 
and frequency values for the reference model. 
Subsequent control inputs allow the critic to refine 
these values.   

6 Conclusions 
This paper presented a Level 2 intelligent control 
architecture that utilizes an adaptive critic to tune the 
parameters of a reference model, which is then used to 
define the angular rate commands for a Level 1 
intelligent controller. The goal of this on-going 
research is to improve the performance of the C-17 
under degraded conditions such as control failures and 
battle damage. A simplified version of the adaptive 
critic was used for the piloted study.  Pilot ratings using 
a motion based simulation facility showed good 

handling quality improvement over static reference model 
approach.  
 Adaptive critic approaches are ideally suited for 
outer-loop trajectory management. Challenges going 
forward will be to generalize this technology for higher 
order reference models. Stability of the first order model 
was easy to ascertain by limiting the parameters. For 
higher order models, efforts are underway in arriving 
adaptation laws that guarantee stability.  
 One of the issues that came up during manned 
flight was the concept of “control harmony”. When 
reference model gains are modified in one axis and not 
proportionately in the other, pilots experience a bigger 
coupling effect at the stick input. Efforts are underway to 
quantify this effect and to derive certain adaptation 
heuristics to avoid this man-machine interaction issue.  
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Figure 4. Data taken during piloted simulation testing 
(dataset 20030512/122330) using ORC configuration of 
the critic; the pilot flew a landing with a full tail hydraulic 
failure (Scenario #1, Table 1). Subplot 1: Normalized stick 
input to the system. Horizontal axis is elapsed time in 
minutes. Subplot 2: Reference model gain parameter (k) 
for the pitch control of the system; Subplot 3: Reference 
model pitch frequency.  Subplot 4: Standard approach plot 
of glide slope deviation. Horizontal axis is Nautical Miles 
from threshold. Subplot 5: Standard approach plot of 
localizer deviation. Subplot 6: Pitch rate error in degrees 
per second. 
 

Figure 5. Data taken during piloted simulation testing 
(dataset 20030512/133532) using ORC configuration of 
the critic; the pilot flew an assault descent through to a 
landing with a series of cascaded failures (Scenario #4, 
Table 1). Subplot 1: Normalized stick input to the system. 
Horizontal axis is elapsed time in minutes. Subplot 2: 
Reference model gain parameter (k) for the pitch control of 
the system; Subplot 3: Reference model pitch frequency.  
Subplot 4: Standard approach plot of glide slope deviation. 
Horizontal axis is Nautical Miles from threshold. Subplot 
5: Standard approach plot of localizer deviation. Subplot 6: 
Pitch rate error in degrees per second. 
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Figure 6. A synthetic exercise with many doublets in the roll axis; full wing hydraulic failure induced at the vertical 
dashed mark. Subplot 1 (Left): Normalized stick input to the system. Horizontal axis is elapsed time in minutes. 
Subplot 2 (Left): Reference model gain parameter (k) for the roll control of the system; Subplot 3 (Left): Reference 
model roll frequency. Subplot 4 (Left): vertical axis represents the reference model gain (k) and the horizontal axis 
presents the error in the roll rate. Subplot 1 (Right): Normalized rate error in roll axis. Horizontal axis is elapsed time 
in minutes. Subplot 2 (Right):  Partial derivative of J with respect to the gain, k. Subplot 3 (Right): Excess control 
demanded in roll axis. Subplot 4 (Right): Square of the error in the adaptive critic network.  

Figure 7. Pitch axis plots for a full tail hydraulic failure (Scenario 1). Descriptions are the same as for Figure 6.  
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